Document Type : علمی - پژوهشی

Authors

1 Golestan University

2 Ferdowsi university of Mashhad

3 Ferdowsi University of Mashhad

Abstract

Extended Abstract
1.Introduction
The physical developments of cities are considered as the main factors of changes in the land use and the land cover. Urbanization has put the living conditions of urban residents at the risk of destruction by creating the most extensive manipulation of human in nature. However, urban development and changes in the land use patterns cause widespread social and environmental impacts.
These impacts include the reduction of natural spaces, the increase of the vehicles concentration, the reduction of the agricultural lands with high production potential, and some impacts on the natural drainage and water quality. These impacts are somehow related to the changes in the land use patterns as a result of human activities. Therefore, it seems vital to understand how changes in the land use and the land cover look in terms ofthe quantity of these changes and their special patternsbecause they have wide impacts on the environment, water cycles, natural habitats and so on.
So the understanding and modeling of these changes are considered as important issues for environment managers, planners, and municipalities. On the other hand, physical development of the cities is eliminating and destroying fertile agricultural lands.
2.Review of the Literature
One of these physical development effects includes development at the suburbs or countryside districtslocated beyond the administrative boundaries of the cities. This urban development has gone into the outer areas of the cities and can lead to changes in the land use over there. Furthermore, the physical urban development will eliminate and destroy high-quality agricultural lands.
At their initial stages of formation, most of the cities in Iran were established near or among the high-quality agricultural lands with the purpose of using high-quality soil for agriculture and then these lands were gradually buried under the cities through villages development.Accordingly,agricultural activities were inevitably receded to the poor lands.
The physical urban development is a dynamic and continuous process in which the city boundaries and its physical space increase in the vertical and horizontal directions both quantitatively and qualitatively. If this process is a rapid and unplanned process, the city space and body will be faced with some problems.
 
3.Method
Landsat (MSS) satellite images taken on 1976/01/06, Landsat (TM) satellite images taken on 2007/29/06, aerial photographs 1:20000 taken in 1979, and land use map 1:250000 prepared in 1998were used in this study.  
In addition, ENVI 4.7, IDRISI Selva and ArcGIS 9.3 software were used for data processing, manifesting, modeling, and getting output.Maximum likelihood method was also used to classify the uses.Analogy after classification was then used to examine changes in uses. Finally, logistic regression model was used for the anticipation of changes.
According to the desired classes for classification (of urban and non-urban areas) before the collection of the urban information so as to prepare an actual map of the ground and a map from the training samples, first the colored pictorial data obtained from the satellite images were generally identified and the urban and non-urban areas were specified on them. Then,50 samples of each class were selected through GPS system by referring to the cities and a map was then prepared with a raster structure according to each of them. Finally, the maps resulted from classification were compared with the actual map of the ground.
4.Results and Discussion
The results of the images classification showed that about 168 hectares of the entire city were covered by the residential areas in 1976 and non-urban lands were about 6025 hectares. On the other hand, in 2007 the urban lands were about 1683 hectares and non-urban lands were about 4510 hectares. The results of the comparison of two classification maps related to the beginning and the end of the period showed that 1515 hectares hadbeen added to the urban area during this period due to the construction.
When the location and level of the residential areas development were determined, logistic regression was used to determine the relationship between the factors associated with this phenomenon. Digital data such as distance from roads, distance from treatment centers, distance from educational centers, distance from arid lands, distance from parks and gardens, and the domain slope and direction were prepared at GIS environment as independent variables of the regression model and then a logistic regression relationship was established between the urban development as the dependent variable and the mentioned parameters.
According to the results, Pseudo R2 amount was equal to 0.2808, so the model fitting can be considered tolerable. On the other hand, the ROC amount was equal to 0.8743, that is, close to 1 which shows high capability of the model for describing the changes and determiningthe areas prone to changes. A pictorial file was also extracted along with the model results through which the areas of urban developments can be anticipated in the future.Maximum-likelihoodcells for development are removed from the imagefile for each period in thefuture as the areas of urban development
5.Conclusion

These models are appropriate for anticipating the urban development location and making urban managers and authorities able to avoid uncontrolled urban development through suitable administrative strategies.
Land zoning around the city is suggested in order to keep valuable lands such as jungles and agricultural lands.

Keywords

1. امینی، م.ر.، شتایی، ش.، معیری، م.ه.، غضنفری، ه. (1385). بررسی تغییرات گستره جنگل‌ زاگرس و ارتباط آن با عوامل فیزیوگرافی و انسانی با استفاده از GIS و RS، مطالعه موردی: جنگل‌های آرمرده بانه. پایان‌نامه جهت اخذ مدرک کارشناسی ارشد جنگلداری، گرگان: دانشگاه گرگان.
2. بهرام‌سلطانی، ک. (۱۳۷۱). مجموعه مباحث و روش‌های شهرسازی، محیط زیست. مرکز مطالعات و تحقیقات شهرسازی و معماری ایران
3. حبیبی، ک ‌و نظری عدلی، س. (۱۳۸۶). پیاده سازی ماتریس‌های همجواری در سیستم اطلاعات مکانی به منظور تعیین و یا تغییر کاربری‌های شهری. تهران: همایش ژئوماتیک ۱۳۸۶.
4. رضایی، ب.، رستم زاد، ه.، فیضی زاده، ب. (1386). بررسی و ارزیابی روند تغییرات سطوح جنگل با استفاده از سنجش از دور و GIS (مطالعه مورد: جنگل های ارسباران 1987-2005). مجله پژوهش های جغرافیایی، 62، 143-159.
5. رنجبر، ا. (1381). بررسی و برآورد روند تخریب جنگل‌ها با استفاده از GIS و داده‌های سنجش از دور. پایان‌نامه جهت اخذ مدرک کارشناسی ارشد سنجش از دور، تهران: دانشگاه خواجه نصیرالدین طوسی.
6. سازمان مدیریت و برنامه ریزی استان ایلام. (1385). جایگاه استان ایلام در تحقق جهت‌گیری‌های آمایش سرزمین. سالنامه آماری ایلام (جمعیت)، ایلام: سازمان مدیریت و برنامه ریزی استان ایلام.
7. شتایی، ش.، حسینعلی زاده، م.، ایوبی، ش.ا. (1386). بررسی قایلیت داده‌های طیفی سنجنده ETM+ در برآورد مقدار ماده آلی سطحی خاک، مجله علمی پژوهشی مرتع، 1 (1)، 67-78.
8. شیعه، ا. (۱۳۷۷). مقدمه‌ای بر مبانی برنامه‌ریزی شهری. تهران: انتشارات علم و صنعت تهران.
9. محمدزاده، ر. (1386). بررسی زیستمحیطی توسعۀ شتابان شهرها با تأکید بر شهرهای تهران و تبریز. مجلۀ توسعۀ ناحیهای، 9، 112-93.
10. محمدی، م. (۱۳۵۱). گزارش خاک شناسی نیمه تفصیلی شهر مشهد منطقه قوچان؛ استان خراسان. نشریه مؤسسه تحقیقات خاک و آب، 333.
11. مسگری، س. (1381). بررسی تغییرات سطوح جنگل‌ها با استفاده از GIS و سنجش از دور، تهران: طرح پزوهشی دانشکده فنی، دانشگاه خواجه نصیر الدین طوسی.
12. نجفی، ا. (1389). قابلیت‌ها و محدویت‌های ژئومورفولوژیکی توسعه فیزیکی شهر ایلام، پایان نامه جهت اخذ مدرک کارشناسی ارشد ژئومورفولوژی، تهران: دانشگاه تهران.
13. Allen, J., & Lu, K. (2003). Modeling and prediction of future urban growth in the Charleston Region of South Carolina: A GIS-based integrated approach. Conservation Biology, 8(2), 2.
14. Arsanjani, J. J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(10), 265-275.
15. Bagheri, R., & Shataee, S. (2010). Modeling forest areas decreases, using logistic regression (Case study: Chehel-Chay Catchment, Golestan Province. Iranian Journal of Forest, 2(4), 243-252.
16. Bella, K. P., & Irwin, E. G. (2002). Spatially explicit micro-level modeling of land use change at the rural urban interface. Agricultural Economics, 27(3), 217-232.
17. Braimoh, A., & Vlek, P. L. G. (2003, January). Modeling land use change in Northern Ghana. Paper presented at the Conference of Technological and Institutional Innovations for Sustainable Rural Development, Gottingen, Germany.
18. Chavez, P. S. (1996). Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(12), 1025-1036.
19. Clark, W. A., & Hosking, P. L. (1986). Statistical methods for geographers. New York: John Wiley and Sons.
20. Dellepian, S. G., & Smith, P. C. (1999). Quality assessment of image classification algorithms for land cover mapping: A review and a proposal for a cost based approach. International Journal of Remote Sensing, 20(1), 1461-1486.
21. Eastman, J. R. (2002). Idrisi for windows, user’s guide version 32: Introduction. Worcester, MA: Clark School of Geography.
22. Fang, S., Gertner, G. Z., Sun, Z., & Anderson, A. A. (2005). The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and Urban Planning, 73(12), 294-306.
23. Geoghegan, J., Cortina Villar, S., Klepeis, P., Macario Mendoza, P., Ogneva-Himmelberger, Y., Roy Chowdhury, R. R., ... & Vance, C. (2001). Modeling tropical deforestation in the Southern Yucatan Peninsular Region: Comparing survey and satellite data. Agriculture, Ecosystems, and Environment, 85(1-3), 25-46.
24. He, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667-688.
25. Jongman, R. H., Bunce, R. G., & Elena-Rossello, R. (1998). A European perspective on the definition of landscape character and biodiversity. Key concepts in landscape ecology. In J. W. Dover, & R. G. H. Bunce (Eds.), Proceedings of the 1998 European Congress of the International Association of Landscape Ecology (pp. 1-35). UK: IALE.
26. Lambin, E. F., & Strahlers, A. H. (1994). Change-Vector analysis in multi-temporal space: A tool to detect and categorize land cover change processes using high temporal resolution satellite data. Remote Sensing of Environment, 48(2), 231-244.
27. Liao, J. G., & McGee, D. (2003). Adjusted coefficients of determination for logistic regression. American Statistician, 57(3), 161-165.
28. Mesgari, S., & Ranjbar, A. (2003, April). Analysis and estimation of deforestation using satellite imagery and GIS. Paper presented at the 6th Annual International Conference and Exhibition, New Delhi, India.
29. Oñate-Valdivieso, F., & Sendra, J. B. (2010). Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling). Journal of Hydrology, 395(12), 256-263.
30. Pauchard, A., Aguayo, M., Pena, E., & Urrutia, R. (2006). Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepcion, Chile). Biological Conservation, 26(6), 553-575.
31. Rossiter, D. G., & Loza, A. (2016). Analyzing land cover change with logistic regression in R. Technical Report ITC, Enschede. Retrieved from http:// www.css.cornell.edu/ faculty/ dgr2/ teach/R/R_lcc.pdf
32. Schneider, L., & Pontius, R. G. (2001). Modeling land use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85(18), 83-94.
33. Sluiter, R., & De Jong, S. M. (2007). Spatial patterns of Mediterranean land abandonment and related land cover transitions. Landscape Ecology, 22(4), 559-576.
34. WU, F., & Yeh, A. G. (1997). Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: A case study of Guangzhou. Urban Studies, 34(11), 1851-1880.
CAPTCHA Image