Document Type : *


1 Ph.D. student urban planning, Urban Planning, Faculty of architecture and urban planning, Art university of Isfahan, Isfahan, Iran

2 Assistant Professor, Urban Planning, Faculty of architecture and urban planning, Art university of Isfahan, Isfahan, Iran


The crisis of urban road safety is one of the major development challenges of countries. Of road users, pedestrians are known as one of the most vulnerable groups. Uncontrolled intersections are places with high pedestrian accident rates. Tehranpars intersection is one of the most important intersections in the east of Tehran, where a significant number of pedestrian injuries occur. The increasing trend of the number of accidents in the intersection area since 2014 shows the need to pay attention to this issue. In this article, while examining the existing condition, the most important indicators in the safety of individuals are determined. The method used in this study is descriptive-analytical and it is practical research. The research data were collected in the framework of library studies, field observations, and a questionnaire design (statistical population including residents and space users with a sample size of 333 people). The mean and standard deviation of the statistical population response to the questionnaire variables are compared with the ideal situation. The structural equation model is also used to measure the relationship between factors affecting the safety of individuals. Law enforcement (3.4) had the highest average from the point of view of individuals. The investigation of the factor loads of the model on human dimensions (0.97), physical (0.96) management (0.95), and path equipment (0.908) showed the significance of these relationships and the prominent role of human standard indicators. The relationships between external and internal variables, physical criteria and land use variable (factor load = 0.71) showed the highest correlation, which is expected to be the basis for planning in this intersection in the proposed measures.


  1. حافظ‌نیا، م. ر. (1396). مقدمه‌ای بر روش تحقیق در علوم انسانی. تهران: نشر سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت).
  2. حقیقی فرد، پ.، و ذاکرحقیقی، ک. (۱۳۹۶). ارزیابی مدل سرزندگی خیابان‌های شهری در ایران (نمونه موردی خیابان انقلاب، تهران). تهران: پنجمین کنگره بین‌المللی عمران، معماری و توسعه شهری.
  3. حکمت نیا، ح.، و انصاری، ژ. (1391). مقایسه تحلیلی معابر و نقاط حادثه‌خیز شهر یزد در سال‌های 85 و 86. جغرافیا و توسعه فضای شهری، (2)، 115-138.
  4. ذوقی، ح.، حاجعلی، م.، و ملک، م. ر. (1391). شناسایی عوامل مؤثر بر ایمنی عابران پیاده در معابر و ارائه راهکارهایی جهت افزایش ایمنی آن‌ها. تهران: معاونت و سازمان حمل‌ونقل و ترافیک، یازدهمین کنفرانس بین‌المللی مهندسی حمل‌ونقل ترافیک.
  5. زنگنه، ی.، نبی زاده، ر.، و احمدی، ط. (1391). ارزیابی تجهیزات ایمنی عابران پیاده در خیابان‌های شهری (نمونه موردی: شهر کوهدشت). تهران: معاونت و سازمان حمل‌ونقل و ترافیک، دوازدهمین کنفرانس بین‌المللی مهندسی حمل‌ونقل ترافیک.
  6. صاحبی، س. (1394). ارائه مدل ارزیابی عوامل مؤثر بر شدت تصادفات کاربران آسیب‌پذیر راه با استفاده از مدل‌های ناحیه‌ای. مهندسی حمل‌ونقل، 6(4)، 581-592.
  7. مهندسین مشاور طرح و برنامه (1385). خلاصه گزارش طرح تفصیلی منطقه 13. تهران: مرکز مطالعات و برنامه ریزی شهر تهران.
  8. نجیب نیا، س.، رضوی، س.، و محمدی، ا. (1391). مقایسه امنیت عابران پیاده دو محور آیت‌الله شیرازی و نواب صفوی پیرامون حرم رضوی. تبریز: همایش ملی معماری، فرهنگ و مدیریت شهری.
  9. نوران، م.، محمودی، آ.، و نجف‌آبادی پور، ت. (1391). بررسی تحلیلی آمار تلفات عابران پیاده برمبنای پارامترهای مختلف و ارزیابی اثربخشی اجرای طرح ارتقای ایمنی عابران پیاده. تهران: معاونت و سازمان حمل‌ونقل و ترافیک، دوازدهمین کنفرانس بین‌المللی مهندسی حمل‌ونقل ترافیک.
  10. وزیری، ا.، و زنگی‌آبادی، م. (۱۳۹۲). تحلیل تصادفات و شناسایی نقاط حادثه‌خیز در شهر تهران بر مبنای GIS. تهران: معاونت و سازمان حمل‌ونقل و ترافیک، سیزدهمین کنفرانس بین‌المللی مهندسی حمل‌ونقل و ترافیک.


  1. Cho, Y., Jeong, H., Choi, A., & Sung, M. (2019). Design of a connected security lighting system for pedestrian safety in smart cities. Sustainability11,
  2. Deb, Sh., Carruth, D.W., & Hudson, C. (2020). How communicating features can help pedestrian safety in the presence of self-driving vehicles: Virtual reality experiment. IEEE Transactions on Human-Machine Systems, 50(2), 176-186.
  3. Eyobu, O., Joo, Jh., & Seog Han, D. (2017). A broadcast scheme for vehicle-to-pedestrian safety message dissemination. international Journal of Distributed Sensor Networks, 13 (11), 1-19.
  4. Fu, T., Miranda-Moreno, L., & Saunier, N. (2018). A novel framework to evaluate pedestrian safety at non-signalized locations. Accident Analysis & Prevention, 111, 23-33.
  5. Guo, Q., Xu, P., Pei, X., & Wong, S.C., & Yao, D. (2016). The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach. Accident Analysis & Prevention, 99, 114-124.
  6. Hannah, Ch., Spasić, I., & Corcoran, P. (2018). A computational model of pedestrian road safety: The long way round is the safe way home. Accident Analysis & Prevention, 121, 347-357.
  7. Kim, D. (2019). The transportation safety of elderly pedestrians: Modeling contributing factors to elderly pedestrian collisions. Accident Analysis & Prevention, 131, 268-274.
  8. Kim, S., & Ulfarsson, G.F. (2018). Traffic safety in an aging society: Analysis of older pedestrian crashes, Journal of Transportation Safety & Security, 11(3), 323-332.
  9. Koekemoer, K., Gesselleen, M., Niekerk, A., Govender, R., & Bastiaan, A. (2016). Child pedestrian safety knowledge, behaviour and road injury in Cape Town, South Africa, Accident Analysis & Prevention, 99, 202-209.
  10. Lee, J., Abdel-Aty, M., Xu, P., & Gong, Y. (2019). Is the safety-in-numbers effect still observed in areas with low pedestrian activities? A case study of a suburban area in the United States. Accident Analysis & Prevention, 125, 116-123.
  11. Li, Y., Xiong, D., Wang, L., Feng, B., & Xu, J. (2019). Dynamic mechanical behavior and pedestrian safety characteristics of toughened laminated windshield. Composites Part B: Engineering, 163, 740-751.
  12. Lin, P., Guo, R., Bialkowska-Jelinska, E., Kourtellis, A., & Zhang, Y. (2019). Development of countermeasures to effectively improve pedestrian safety in low-income areas. Journal of Traffic and Transportation Engineering (English Edition), 6(2), 162-174.
  13. Nesoff, E. , Milam, A. J., Pollack, K.M, Curriero, F. C., Bowie, J. V., Gielen, A.C., Furr-Holden, D. M. (2018). Novel methods for environmental assessment of pedestrian injury: Creation and validation of the inventory for pedestrian safety infrastructure. Journal of Urban Health95, 208–221.
  14. Osama, A., & Sayed, T. (2017). Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety. Accident Analysis & Prevention, 107, 117-125.
  15. Park, Y., & Garcia, M. (2019). Pedestrian safety perception and urban street settings. International Journal of Sustainable Transportation, 14(11), 860-871.
  16. Ritchie, H., Roser, M. (2018). Causes of Death, Our World in Data. Retrieved from: '' [Online Resource]
  17. Shahum, L. (2015). Components of a Strong Vision Zero Commitment.
  18. Soilána, M., Riveiroa, B., Rodríguezb, A., & Ariasb, P. (2018). Safety assessment on pedestrian crossing environments using MLS data. Accident Analysis and Prevention. Accident Analysis & Prevention. 111, 328-337.
  19. Tumar, A. (2017). Vision zero, City of Philadelphia, Three year action plan.
  20. World Health Organization (2013). Pedestrian safety: a road safety manual for decision-makers and practitioners. Switzerland: WHO Publications.
  21. World Health Organization (2015). Global status report on road safety. Switzerland: WHO Publications.
  22. Ynathan, M., & Perumal, V. (2012). Study on pedestrian crossing behavior at signalized intersections. Journal of Traffic and Transportation Engineering (English Edition), 1(2), 103-110.
  23. Zhang, C., Zhou, B., Chen, G., & Chen, F. (2017). Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China. Accident Analysis & Prevention, 108, 19-26.