Document Type : علمی - پژوهشی

Authors

1 UNIVERSITY OF ZANJAN

2 tehran tehran university

3 University of Zanjan

4 PhD student in Geography and Urban Planning, University of Tehran

Abstract

Extended Abstract
1. Introduction
This study tried to evaluate the resilience of the physical texture in District 8 of Shiraz city. This district embraces the primary core of Shiraz. In addition to the historical buildings that are considered the cultural heritage and identity of the city, a large part of the residential neighborhoods are located in this area. It has a population of 35727 people. The current buildings in this area, like the old and central parts of other old cities of Iran, are in a bad condition because they are so old, as well as due to the type of materials used, the economic and social conditions of its residents, and their resilience against natural disasters. Considering the issues, the main goal of this study was determined to be evaluating the existing buildings in District 8 of Shiraz in terms of resilience indicators and also designing the physical-spatial pattern of resilience in these districts, so that measures can be taken for enhancing their resilience.
2. Method
The descriptive-analytical research used spatial data related to the existing buildings of District 8 of Shiraz. The indicators used in this study are building age, building quality, building skeleton, number of building floors, building area, and building materials. The models that were used are the spatial regression model for discovering the trend of the pattern, which was done using Geoda software, and Moran's global model (Moran's I) for discovering the spatial pattern (cluster, random, scattered) of physical resilience in the district and Moran's local model for identifying the clusters formed in ArcGis software.
3. Results
The findings were evaluated in descriptive and inferential parts. Regarding the descriptive findings, the physical resilience indicators of District 8 of Shiraz were categorized by the ArcGIS software. The results obtained from the maps showed that in terms of the number of floors, a major part of the physical texture of District 8 of Shiraz are in the low resilience and non-resilience category. Regarding the building skeleton, it is worth noting that the data shows that a major part of the texture of District 8 of Shiraz is in low and somewhat medium resilience category. Regarding the building quality indicator, the data showed that most of the texture of District 8 of Shiraz range from low to medium resilience. Regarding grading indicator, the data showed that a high percentage of buildings in District 8 have low to non-resilient resilience. Regarding the age of the buildings the data showed that most of the texture of District 8 are in an unstable condition. In inferential stage of this study, to identify the patterns for the classification of resilience in the texture of District 8 of Shiraz, through the Regression option of Geoda and ArcGis software. The resilience variable was independent variable and dependent variable were decided to be selected indicators. The process of determining patterns for the classification of physical resilience indicators showed that the quality of building indicator coefficient with 0.750 and building skeleton with a value of 0.704 had the highest impact on the resilience of the buildings. Moran's I was used to measure spatial correlation. The value of the statistic was 0.054659, indicating a positive spatial autocorrelation (cluster pattern). The map obtained from the local Moran showed that a major part of the texture of District 8 of Shiraz have medium to very low resilience. According to the map obtained from the GIS environment, of the 12,717 residential buildings located in the District 8 of Shiraz, about 1,076 residential buildings (8.46%) are in a completely resilient state, and 745 (5.85%), have very high resilience, 550 residential buildings (4.32%) have high resilience, 2016 residential buildings (15.85%) are in a completely unsustainable situation, and 994 residential buildings (7.81%) are in a very low resilience status. It is worth noting that most of these residential buildings are considered small and have low durability, which cover most of the southern and southwestern areas of the district. Moreover, 577 residential buildings (4.53%) are in a low resilience state. Therefore, we can say that out of 12,717 residential buildings of District 8 of Shiraz, 3,587 residential buildings (20.28%) are in a poor state regarding resilience against accidents. These are located in Labe Ab, Sardozak, Sang Siah, and Eshagh Beyg neighborhoods, as well as the central parts of Darb Shazdeh and Balakaft neighborhoods. Most of the neighborhoods are residential parts of the district, so the residents of these neighborhoods are in serious danger.
4. Conclusion
The results showed that most of the texture of District 8 of Shiraz is located in non-resilient and medium-resilient clusters. These parts are susceptible to many life and financial losses in case of disasters and need quick initiatives to increase resilience. Considering the results on the shortcomings and obstacles in District 8 of Shiraz, the following measures are suggested for increasing the physical resilience of this district: 1. Improvement, renovation and strengthening the non-resilient and resilient residential buildings based on the requirements in the building code 2800; 2. Examining the vulnerability of the neighborhoods that are in the list of neighborhoods with low resilience (Labe Ab, Sardozak, Sang Siah, and Eshagh Beyg neighborhoods, Darb Shazdeh and Balakaft neighborhoods); 3. Increasing green spaces, re-urbanization, and securing water, electricity, gas facilities and hazards in the central texture, especially the worn-out parts of the district; 4. Implementing restricting policies on construction in the district to prevent consolidation of lands with unsustainable skeletons in the district, especially in Sang Siah, Sardozak, Labe Ab and Darb Shazdeh neighborhoods; 5. Renewing, restoring, and increasing the resistance of the historical textures of the district, especially in Sang Siah neighborhood in which Bazar Bozork is located; 6. Enhancing the flexibility and permeability of facilities of this district, increasing rescue equipment, and paying attention to the physical changes of this district.
 
 

Keywords

  1. ابراهیم زاده، ع.، کاشفی دوست، د.، و حسینی، س.ا. (1398). ارزیابی تاب آوری کالبدی شهر در برابر زلزله (نمونه موردی: شهر پیرانشهر). مخاطرات محیط طبیعی، 8(20)، 146-131.
  2. پاشاپور، ح.ا.، و پوراکرمی، م. (1396). سنجش ابعاد کالبدی تاب آوری شهری در برابر مخاطرات طبیعی (زلزله) (مطالعات مورد منطقه 12 شهر تهران). مطالعات برنامه ریزی سکونتگاه های انسانی (چشم انداز جغرافیایی)، 12(4)، 1002-985.
  3. پوراحمد، ا.، ابدالی، ی.، صادقی، ع.، و اله قلی پور، س. (1397). سنجش و تحلیل فضایی مؤلفه های تاب آوری کالبدی در بافت مرکزی شهر همدان با استفاده از خودهمبستگی فضایی موران. برنامه ریزی و توسعه کالبدی، 3(1)، 104-92.
  4. حاتمی نژاد، ح.، ابدالی، ی.، و قلی پور، س. (1396). سنجش آسیب پذیری سازه ای بافت فرسوده شهری در برابر مخاطرات، با رویکرد پدافند غیرعامل (مطالعه موردی: بافت فرسوده مرکزی کلانشهر اهواز). فصلنامه علمی-پژوهشی اطلاعات جغرافیایی، 26(104)، 172-159.
  5. داداش پور، ه.، و زینب، ع (1394). سنجش ظرفیت های تاب آوری در مجموعه شهری قزوین. مدیریت بحران، 4(8)، 84-73.
  6. رضایی، م.ر.، رفیعیان، م.، و حسینی، س.م. (1394). سنجش و ارزیابی میزان تاب آوری کالبدی اجتماع های شهری در برابر زلزله (مطالعه موردی: محله های شهر تهران). پژوهش های جغرافیای انسانی، 47(4)، 623-609.
  7. روستایی، ش.، حسین حقی، و.، و جداری، ا. (1398). ارزیابی میزان تاب آوری کالبدی محیط های شهری در برابر زلزله (نمونه موردی کلانشهر تبریز). نشریه پژوهش های اجتماعی ، 43.
  8. فرخ زاده، م.، احدنژاد، م.، و امینی، ج. (1390). ارزیابی آسیب پذیری مساکن شهری در برابر زلزله (مطالعه موردی منطقه 9 شهرداری تهران). مطالعات و پژوهش های شهری منطقه ای، 3(9)، 19-36.
  9. لطیفی، ا.، زیاری، ک.ا.، و نادری، س.م. (1400). تبیین مؤلفه های کلیدی افزایش تاب آوری کالبدی شهر تهران در برابر زلزله با رویکرد تحلیل ساختاری (مطالعه موردی: منطقه 10). جغرافیا و مطالعات محیطی، 10(1)، 182-161.
  10. محبی، ح.، حسینی، س.ح.، مهرورز، ش.، پناهی، ف.، پناهی، یونس.، و محرم زاد، ی. (1386). بررسی فراوانی ضایعات و اقدامات درمانی در مصدومین زلزله بم ارجاع شده به بیمارستان های نظامی و غیرنظامی تهران. مجله طب نظانی، 9(1)، 36-31.
  11. منصوریان، ح.، رجائی، س.ع.، عاشوری، ح.، و حاتمی، ا. (1397). گذار از بازار کار شهری به بازار کار منطقه ای در ایران (تحلیلی بر داده های جمعیت شناور). برنامه ریزی فضایی، 8(1)، 70-51.
  12. مهندسین مشاور پرداراز. (1398). طرح تفصیلی منطقه 8 (بافت تاریخی-فرهنگی شیراز). تهران: مهندسین مشاور پرداراز.
  13. نامجویان، ف.، رضویان، م.ت.، و سرور، ر. (1396). تاب آوری شهری، چارچوبی الزام آور برای مدیریت آینده شهرها. جغرافیای سرزمین، 14(55)، 95-81.

 

  1. Borden, K.A., Schmidtlein , M., Chris Emrich, Ch., Piegorsch, W.W., & Cutter, S.L. (2007). Vulnerability of US cities to environmental hazards. Journal of Homeland Security and Emergency Management, 1-21.
  2. Cutter, S.L., Berry, M., Burton, C., Evans, E., & Webb, J., (2008). A place based model for understanding commuting resilience to natural disasters. Global environmental change, 18(4), 589-606.
  3. Davis, I., & Izadkhah, Y.O. (2006). Building resilient urban communities. Open House International, 31(1), 11-21.
  4. Dicken, P. (2011). Global Shift: Mapping the changing contours of the world economy (sixth). New York: Guilford Press.
  5. Fastiggi, M., Meerow, S., & Miller, T.R. (2021). Governing urban resilience: Organizational structures and coordination strategies in 20 North American city governments. Urban Studies, 58(6) 1262–1285.
  6. Godschalk, D.R. (2003). Urban hazard mitigation: Creating resilient cities. Natural Hazards Review, 4(3), 136–143.
  7. Gonçalves, L.A.P.J., & Ribeiro, P.J.G. (2020). Resilience of urban transportation systems. Concept, characteristics, and methods. Journal of Transport Geography, 102727.
  8. Jorge, , Gomes, R., Pena, A., & Gonçalves, J. (2019). Urban resilience: A conceptual framework. Sustainable Cities and Society, 50, 101625.
  9. Kanno, Y., Fujita, S., & Ben-Haim, Y. (2017). Structural design for earthquake resilience: Info gap management of uncertainty. Journal of Structural Safety, 69, 23-33.
  10. Lechner, S., Jacometti, J., McBean, G., & Mitchison, N. (2016). Resilience in a complex world–Avoiding cross-sector collapse. International Journal of Disaster Risk Reduction, 19, 84-91.
  11. Mileti, D. (1999). Disasters by design: A reassessment of natural hazards in the United States. Washington, D.C: Joseph Henry Press.
  12. Tierney, Kathleen J., Michael K. Lindell, and Ronald W.P. (2001). Facing the unexpected: disaster preparedness and response in the United States, Natural hazards and disasters. Washington D.C.: Joseph Henry Press.
  13. UN-org /qatar- ambassador- jabor- bin- ali- al- dosari- and- un- habitat- executive directohold - talks/ 2018
  14. Zhang, X.. & Li, H. (2019). Urban resilience and urban sustainability: What we know and what do not know? International Journal of Cities, 72, 141-148.
  15. Zimmerman, R. (2001). Resiliency, vulnerability, and criticality of human systems. Research theme from the New York University Workshop on Learning from Urban Disasters, http://www.nyu.edu/icis/ Recovery/projects.html& ~Sep. 18
CAPTCHA Image