Document Type : علمی - پژوهشی
Authors
1 Student
2 Professor
3 Ferdowsi University of Mashhad
Abstract
Increase in urban population has led to the uncontrolled and unplanned expansion of cities, which has led to an increase in energy consumption, including electricity. The aim of this study is to analyze the impacts of Karaj’s form on electricity consumption and the length of power network lines as carriers. The required data of this applied and descriptive-analytical study was collected through the library resources and going to organizations. The statistical population is 173 neighborhoods of Karaj city. The geographic weight regression (GWR) tool was used to determine the spatial variation between the independent and dependent variables. The results showed that the form of Karaj city highly compacts the neighborhoods of Regions 5, 1, 7, and 2, but the neighborhoods of Regions 3 and 4 have a spiral state due to the villas and the high infrastructure of the villa gardens in part of the city. Based on the results obtained from local weight regression, the population density index as one of the important indicators of city form has the highest impact on electricity consumption in Karaj (R2 equals 78). That is, the city form index, according to this index at the 95% confidence level, justifies 78% of electricity consumption. Moreover, the entropy index as one of the indicators of the independent variable (city form) with (R2=0.66) has the highest impact on the length of Karaj electricity network lines. Therefore, the results showed that the form of the city of Karaj has a spatial relationship of more than 0.50% on the electricity consumption and the length of the lines of the power grid of the city.
Keywords
- دیوسالار، ا.، کیانژاد تجنکی، ق.، عبدی بورا، م.، و خدادا، م. (1397). تحلیل تطبیقی و سنجش ساخت و شکل شهری (مطالعه موردی: شهر بابل).مطالعات محیطی هفت حصار، 8(29)، 39-50.
- رفیعیان، م.، فتح جلالی، آ.، و داداشپور. ه (1390)، بررسی و امکان سنجی تأثیر فرم و تراکم بلوک های مسکونی بر مصرف انرژی شهر، نمونه موردی شهر جدید هشتگرد. مجله آرمان شهر، 6، 116-107.
- رفیعیان، م.، و زاهد. ن (1398). تحلیل فضایی فرسودگی محلههای شهر قم با استفاده از رگرسیون وزنی جغرافیایی.پژوهشهای جغرافیای برنامهریزی شهری، 6(2)، 361-383.
- روستایی، ش.، پورمحمدی، م.، و درویشی، ف. (1397). تحلیل فضایی عوامل مؤثر بر افزایش قیمت مسکن در کلانشهر تبریز با استفاده از ضریب همبستگی و مدل برازش رگرسیونی. فصلنامه مطالعات مدیریت شهری، 10(33)، 85-96.
- شاهینی فر، ح. م. (1397). کاربرد روش جای پای اکولوژیک در ارزیابی پایداری جغرافیای ناحیه ای (مطالعه موردی: شهرستان کرمانشاه).آمایش محیط، 9(32)، 41-62.
- شماعی، ع.، قاسمی کفرودی، س.، و مردای، ث. (1395). تحلیل فضایی- کالبدی توسعه شهر کرج با تاکید بر شاخصهای رشد هوشمند شهری. فصلنامه جغرافیا و مطالعات محیطی، 5(17)، 52-33.
- عرفانیان، م.، حسین خ، م.، و علیجانپور، ا. (1392). مقدمهای بر روشهای رگرسیون چند متغیره OLS و GWR در مدلسازی مکانی اثرات کاربری اراضی بر کیفیت آب. نشریه ترویج و توسعه آبخیزداری. 1(1).
- عسگری، ع. (1389). تحلیل آمار فضایی با GIS. کرج: سازمان فناوری اطلاعات شهرداری کرج.
- موسوی، م.، آهار، منوچهری میاندوآب، ا.، و قیصری، ح. (1397). تحلیل اثرات رشد پراکنده رویی شهری بر سرمایه اجتماعی مطالعه موردی: شهر مراغه.فصلنامه شهر پایدار، 1(3)، 1-16.
- Arbury, J. (2005). From urban sprawl to compact city – an analysis of urban growth management in Auckland. Available at. http://portal.jarbury.net/thesis.pdf, 175.
- Bibri, S. E. (2020). Advances in the Leading Paradigms of Urbanism and Their Amalgamation: Compact Cities, Eco–Cities, and Data–Driven Smart Cities. Switzerland AG, Cham Switzerland: Springer Nature.
- Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain Cities & Society, 31, 183–212.
- Bibri, S. E., Krogstie, J., & Kärrholm, M. (2020). Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Developments in the Built Environment, 4, 100021.
- Bibri, S. E., Krogstie, J., & Kärrholm, M. (2020). Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Developments in the Built Environment, 4, 100021.
- Burton, E. (2002). Measuring urban compactness in UK towns and cities. Plann. Plann. Des., 29, 219–250.
- Chen, Y., & Fang, Z. (2018). Industrial electricity consumption, human capital investment and economic growth in Chinese cities. Economic Modelling, 69, 205-219.
- Chhipi-Shrestha, G., Hewage, K., & Sadiq, R. (2017). Impacts of neighborhood densification on water-energy-carbon nexus: investigating water distribution and residential. Landscaping System. J. Clean. Prod., 156, 786e795.
- Cho, H. S., & Choi, M. J. (2014). Effects of compact urban development on air pollution: Empirical evidence from Korea. Sustainability, 6(9), 5968-5982.
- Cureau, R. J., & Ghisi, E. (2020). Electricity savings by reducing water consumption in a whole city: a case study in Joinville, Southern Brazil. Journal of Cleaner Production, 261, 121194.
- Ewing, R., Rong, F. (2008). The impact of urban form on U.S. residential energy use. Policy Debate. 19, 1–30.
- Gellert, A., Florea, A., Fiore, U., Palmieri, F., & Zanetti, P. (2019). A study on forecasting electricity production and consumption in smart cities and factories. International Journal of Information Management, 49, 546-556.
- Hui, S. C. (2001). Low energy building design in high density urban cities. Renewable Energy, 24(3-4), 627-640.
- Kuusela, P., Norros, I., Weiss, R., Sorasalmi, T. (2015). Practical lognormal framework for household energy consumption modeling. Energy Build, 108, 223–35.
- Li, C., Song, Y., & Kaza, N. (2018). Urban form and household electricity consumption: A multilevel study. Energy and Buildings, 158, 181-193.
- Li, X. X. (2018). Linking residential electricity consumption and outdoor climate in a tropical city. Energy, 157, 734-743.
- Lindsey, M., Schofer J. L., Durango-Cohen, P., Gray, K. A. (2011). The effect of residential location on vehicle miles of travel, energy consumption and greenhouse gas emissions: Chicago case study. Transp Res Part Transp Environ, 16(1), 1–9.
- Muraca, B., & Voget-Kleschin, L. (2011). Strong sustainability across culture(s). In: Banse, G. Nelson, G.L. Parodi, O. (Eds.), Sustainable Development—The Cultural Perspective: Concepts, Aspects, Examples. Berlin: Edition Sigma.
- Næss, , Strand, A., Næss, T., & Nicolaisen, M. (2011)On their road to sustainability?: challenge of sustainable mobility in urban planning and development in two Scandinavian capital regions’. Town Planning Review, 82 (3), 287–315.
- Oliveira-Lima, J. A., Morais, R., Martins, J. F., Florea, A., & Lima, C. (2016). Load forecast on intelligent buildings based on temporary occupancy monitoring. Energy and Buildings, 116, 512–521.
- Ota, T., Kakinaka, M., & Kotani, K. (2018). Demographic effects on residential electricity and city gas consumption in the aging society of Japan. Energy Policy,115, 503-513.
- P., Keim, C., Robazza, G., Viejo, P., & Schofield, J. (2014). Cities and energy: Urban morphology and residential heat-energy demand. Environment and Planning B Planning and Design, 41(1), 138-162.
- Sikder, S. K., Nagarajan, M., Kar, S., & Koetter, T. (2018). A geospatial approach of downscaling urban energy consumption density in mega-city Dhaka, Bangladesh. Urban Climate, 26, 10-30.
- Silva, L. T., & Monteiro, J. P. (2016). The Influence of Urban Form on Environmental Quality within a Medium-sized City. Procedia Engineering, 161, 2046-2052.
- Song, M., Zhao, X., & Shang, Y. (2020). The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resources, Conservation and Recycling, 157, 104777.
- Zhang Y., Guindon, B., Sun, K. (2016). Exploring the link between urban form and work related transportation using combined satellite image and census information: Case of the Great lakes region. International Journal of Applied Earth Observation and Geoinformation, 47, 139–15
- Zhao, S., Liu, Y., Liang, S., Wang, C., Smith, K., Jia, N., & Arora, M. (2020). Effects of urban forms on energy consumption of water supply in China. Journal of Cleaner Production, 253, 119960.
Send comment about this article