نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه مازندران

2 دانشگاه محقق اردبیلی

چکیده

ساختار فضایی شهرها به شکلی عمیق با الگوی سفرهای درون شهری به منظور دسترسی به محل کار، سکونت، تفریح و امور روزمره در ارتباط است. این پیوند ناگسستنی به نوبه خود تحت تأثیر کیفیت و شیوه های مختلف سفر می تواند بر کیفیت محیطی شهرها و از آن جمله کیفیت هوا، تأثیر مستقیم برجای بگذارد. از این رو تأثیر ساختار فضایی شهر بر کیفیت هوای شهری تحت تأثیر الگوی های سفر قابل تحلیل و پیش بینی است. این تحقیقی است توصیفی-تحلیلی مبتنی بر اطلاعات ثانوبه و طی آن ابتدا ساختار فضایی شهر تهران توسط ضریب آنتروپی شانون و ضریب موران بر اساس آمار بلوک های جمعیتی و جِرم فعالیت های جاذب سفر  در سطح مناطق 22 گانه تهران تعیین گردید. در ادامه به بررسی وضعیت آلودگی هوای شهر در وضع موجود پرداخته شد. در مرحله بعدی با استفاده از مدل سازی سناریو، تأثیر ساختارهای فضایی مختلف شهری بر آلوگی هوای تهران مورد سنجش قرار گرفت. نتایج تحقیق نشان می دهد که ساختار فضایی بی مرکز یا پراکنده تأثیری معنی‌دار بر افزایش میزان آلودگی هوای تهران دارد.

کلیدواژه‌ها

عنوان مقاله [English]

The Impact of Urban Spatial Structure Scenarios on Air Pollution (A Case Study of Tehran)

نویسندگان [English]

  • Mostafa Ghadami 1
  • Hadi Abdollahvand 2

1 University of Mazandaran

2 University of Mohaghegh Ardabili

چکیده [English]

Extended Abstract

Introduction

The specialization of occupations, diversity in land use, alteration of land application patterns, and spatial dispersion of activities as well as the increase in the number of daily trips have affected the range of trips or various applications’ sphere of influence; in such a situation, individuals need to travel long distances, particularly via personal automobiles (Ghadami, 2012). Studies by urban planners in this regard show the impact of urban development structure and pattern on exacerbating dependency on vehicles such as automobiles. In other words, any spatial shape or structure could support different transportation pattern in cities.
Either directly through fossil fuel consumption or indirectly through the production of other types of energies, the transportation sector produces various greenhouse gases; subsequently, transportation is considered as one of the main causes of air pollution. Therefore, the identification and design of a spatial structure with the capability of adapting to the present and future conditions while remaining sustainable is, today, one of the vital necessities in the area of urban planning (Bertaud, 2002).
Meanwhile, despite the escalation of numerous issues caused by the expansion of urbanization, the evolution of urban spatial structure is mainly overlooked (Bertaud, 2002). As a result, significant shortcomings due to weak spatial structures are mostly neglected, to the extent to which the time for any sort of action is lost (Bertaud, 2003). Considering the relation between these two important components, in other words, the spatial structure and air pollution, the major purpose of the present study is to examine the impact of spatial structure on the extent of air pollution.

Methodology

The present descriptive, analytical study seeks to provide answers to this question: Do different scenarios of urban spatial structures have different impacts on the extent of the emission of pollutants? Secondary and official information published by the Iranian statistics institution and organizations related to Tehran municipality and the environment protection agency are used in this research.
Network Analysis in ArcGIS software was used to calculate the distances and a possible model for limited attractions and the pollution indices of vehicles in Iran were the main tools and models used in this study.
The three scenarios in the study include 30% of changes in the city’s spatial structure within frameworks including the continuation of the current urban spatial structure pattern, scattered urban growth, and centralization of spatial structure.

Results

The results of Shannon’s entropy model demonstrate an outward, random and decentralized growth of Tehran. Given the results of Gi (getis-ord) statistics and hot-spot clustering in 1996, the city of Tehran involved 2 concentrated areas in 4 regions including regions 14-18 with a population of 6493700, 450160, 264300, and 298600 people, respectively. In 2006 however, the concentrated clusters of Tehran grew to 4 areas in 8 regions including regions 4, 7, 10, 11, 14, 15, 17, and 18 with populations of 813238, 305240, 315173, 275241, 475520, 64329, 255864, and 249786 people, respectively.
To estimate the extent of air pollution in this study, first, the number of trips taken between regions were approximated. According to the information by the comprehensive traffic plan of Tehran, the most used means of transportation are cars. In the next step, various factors of pollutant emission for different vehicles were employed.
In “Scenario A,” air pollution was investigated considering a 30% increase in population and attractive applications across 22 regions of Tehran in compliance with the current pattern. In this study, the concentrations of pollutants separated by vehicles along with the extent of pollutants separated by their types and the entire pollutants in scenarios were calculated. According to the results, in the situation of 30% increase in the current spatial structure pattern, the highest and lowest shares in air pollution are caused by carbon dioxide and lead, respectively.
In the next scenario with a 30% increase in the number of attractive applications and population in outside regions of Tehran including regions 1, 2, 4, 5, 8, 13, 14, 15, 18, 19, 21, and 22, the sum of all pollutants in this scenario is 5565 tons, which compared to the similar scenario (30% of the status quo), an increased extent of pollutants is implied.
In the centralization scenario (C) the 30% spatial structure is added to the extent of attractive applications and population across the central regions of Tehran, namely, ,regions 2, 6, 7, 10, 11, and 12.
A comparative examination among scenarios A, B, and C of the spatial structure in relation to air pollution separated by pollutants (tons) shows that the highest potential for air pollution among scenarios is the first one (Scenario A) with more than 5738 tons. Moreover, the lowest potential for air pollution is related to the centralization of spatial structure scenarios with 5192 tons.

Conclusion

Given what was expressed, it can be concluded that the two scenarios involving the continuation of the status quo and scattered growth (through population growth and activities in outer regions of Tehran) both involve the highest potentials for increasing pollution. These scenarios are of a stronger relationship with the current pattern of Tehran’s spatial structure. This shows that the subject of balancing Tehran’s pollution would remain, regardless of the spatial structure of the city; in case substantial changes in the current structure are overlooked, a more severe increase in Tehran’s pollution is expected.

کلیدواژه‌ها [English]

  • Urban spatial structure
  • Air Pollution
  • scenario
  • Tehran
1. خالقی، ح. (1375)، طرح بررسی منابع آلوده کننده هوای اصفهان، تعیین استانداردهای خروجی از منابع آلودگی هوای تهران، اداره کل حفاظت محیط زیست استان اصفهان.
2. رهنما، م.، عباس زاده، غ. (1387)، اصول، مبانی و مدل های سنجش فرم کالبدی شهر، انتشارات جهاد دانشگاهی مشهد.چاپ اول.
3. سازمان حمل ونقل و ترافیک شهرداری تهران (1389)، طرح جامع حمل ونقل شهر تهران.
4. شکری فیروجاه، پ. (1390)، تأثیر پراکنش فضایی کاربریهای شهری تبریز بر آلودگی هوا، دوفصلنامه پژوهش های بوم شناسی شهری، دوره 2، شماره 3، صص.82-78.
5. ضرابی، ا.، محمدی،ج.، عبدالهی،ع. (1389)، بررسی و ارزیابی منابع ثابت و متحرک در آلودگی هوای شهر ، مطالعه موردی اصفهان، مجله پژوهشی انجمن جغرافیایی ایران، دوره جدید، شماره 26، صص 151-164
6. قدمی،م.، محمدی،س.، و غلامیان، ط. (1391)، بررسی نقش ساختار فضایی شهر در تمایل شهروندان به شیوه سفر شخص،مطالعه موردی شهر بابلسر؛ مجله پژوهش وبرنامه ریزی شهری، دوره 3، شماره 9، صص. 94-77.
7. قدمی،م.،یوسفیان،پ.(1393)، تحلیلی بر تغییرات ساختار فضایی شهر اصفهان با گریزی بر آلودگی هوا، فصلنامه مطالعات ساختار و کارکرد شهری، دوره 2، شماره 8 ، صفحه 63-86
8. مرکز آمار ایران، سرشماری نفوس و مسکن شهر تهران، (1375) .
9. مرکز آمار ایران، سرشماری نفوس و مسکن شهر تهران، (1385) .
10. مرکزتحقیقات معماری و شهرسازی ایران، (1375)، طرح مجموعه شهری تهران، وزارت مسکن و شهرسازی.
11. ویلیامز، ک.، برتون،ا.، جنکنر،م. (1383)، دستیابی به شکل پایدار شهری؛ شکل پایداری و حمل و نقل، ترجمه واراز مرادی مسیحی، جلد اول، چاپ اول، شرکت پردازش و برنامه ریزی شهری، تهران.
12. Bardhan, R., Kurisu, K., & Hanaki, K. (2015). Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities, 48, 55-65.
13. Bento, A. M., Cropper, M. L., Mobarak, A. M., & Vinha, K. (2005). The effects of urban spatial structure on travel demand in the United States. The Review of Economics and Statistics, 87(3), 466-478.
14. Bertaud, A. (2003). Tehran spatial structure: Constraints and opportunities for future development Retrieved from http://alain-bertaud.com images/ AB_ Teheran_ report_ final_3 .pdf
15. Bertaud, A., & Malpezzi, S. (2003). The spatial distribution of population in 48 world cities: Implications for economies in transition Retrieved from https:// www2. lawrence. edu/fast/finklerm/ Complete% 20Spatial% 20Distribution% 20of%20 Population% 20in%20 50%20 World%20 Ci.pdf:
16. Branscomb, L. M. (2006). Sustainable cities: Safety and security. Technology in Society, 28(1), 225-234.
17. Burton, E. (2000). The compact city: Just or just compact? A preliminary analysis. Urban Studies, 37(11), 1969-2006.
18. Dai, F. C., Lee, C. F., & Zhang, X. H. (2001). GIS-based geo-environmental evaluation for urban land-use planning: A case study. Engineering Geology, 61(4), 257-271.
19. Edwards, B. (2002). Rough guide to sustainability. London, England: RIBA.
20. Ferguson, N., & Woods, L. (2010). Travel and mobility. In M. Jenks & C. Jones (Eds.), Dimensions of the sustainable city (Vol. 2, pp. 53–74). London, England: Springer.
21. Gainza, X., & Livert, F. (2013). Urban form and the environmental impact of commuting in a segregated City, Santiago de Chile. Environment and Planning B: Planning and Design, 40(3), 507-522. Garcia-Palomares, J. C. (2010). Urban sprawl and travel to work: The case of the metropolitan area of Madrid. Journal of Transport Geography, 18(2), 197-213.
22. Graedel, T. E., & Crutzen, P. J. (1993). Atmospheric change: An earth system perspective. New York, NY: W. H. Freeman and Company.
23. Jenks, M., & Jones, C. (2010). Dimensions of the sustainable city. London, England: Springer.
24. Kørnøv, L. (2009). Strategic environmental assessment as catalyst of healthier spatial planning: The Danish guidance and practice. Environmental Impact Assessment Review, 29(1), 60-65.
25. Madanipour, A. (2006). Urban planning and development in Tehran. Cities, 23(6), 433-438.
26. Milder, J. (2012). Sustainable urban form. In E. V. Bueren, H. V. Bohemen, L. Itard, & H. Visscher (Eds.), Sustainable urban environments: An ecosystem approach (pp. 263–284). London, England: Springer.
27. Muñiz, I., & Galindo, A. (2005). Urban form and the ecological footprint of commuting: The case of Barcelona. Ecological Economics, 55(4), 499-514.
28. Newman, P., & Kenworthy, J. (1999). Sustainability and cities: Overcoming automobile dependence. London, England: Island Press.
29. OECD (Organization for Economic Co-operation and Development). (2012). Compact city policies: A comparative assessment. East Jerusalem, Israel: OECD.
30. Rodrigue, J.-P., Comtois, C., & Slack, B. (2009). The geography of transport systems. London, England: Routledge.
31. United Nations Human Settlements Programme. (2009). Planning sustainable cities: Global report on human settlements. London, England: Earthscan/UNHabitat.
32. Zebardast, E. (2006). Marginalization of the urban poor and the expansion of the spontaneous settlements on the Tehran metropolitan fringe. Cities, 23(6), 439-454.
CAPTCHA Image